Application of neural computing methods for interpreting phospholipid fatty acid profiles of natural microbial communities.
نویسندگان
چکیده
The microbial community compositions of surface and subsurface marine sediments and sediments lining burrows of marine polychaetes and hemichordates from the North Inlet estuary (near Georgetown, S.C. ) were analyzed by comparing ester-linked phospholipid fatty acid (PLFA) profiles with a back-propagating neural network (NN). The NNs were trained to relate PLFA inputs to sediment type outputs (e.g., surface, subsurface, and burrow lining) and worm species (e.g., Notomastus lobatus, Balanoglossus aurantiacus, and Branchyoasychus americana). Sensitivity analysis was used to determine which of the 60 PLFAs significantly contributed to training the NN. The NN architecture was optimized by changing the number of hidden neurons and calculating the cross-validation error between predicted and actual outputs of training and test data. The optimal NN architecture was found to be four hidden neurons with 60-input neurons representing the 60 PLFAs, and four output neurons coding for both sediment types and worm species. Comparison of cross-validation results using NNs and linear discriminant analysis (LDA) revealed that NNs had significantly fewer incorrect classifications (2.7%) than LDA (8.4%). For the NN cross-validation, both sediment type and worm species had 3 incorrect classifications out of 112. For the LDA cross-validation, sediment type and worm species had 7 and 12 incorrect classifications out of 112, respectively. Sensitivity analysis of the trained NNs revealed that 17 fatty acids explained 50% of variability in the data set. These PLFAs were highly different among sediments and burrow types, indicating significant differences in the microbiota.
منابع مشابه
Unique Honey Bee (Apis mellifera) Hive Component-Based Communities as Detected by a Hybrid of Phospholipid Fatty-Acid and Fatty-Acid Methyl Ester Analyses
Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we ...
متن کاملMicrobial characterization of biological filters used for drinking water treatment.
The impact of preozonation and filter contact time (depth) on microbial communities was examined in drinking water biofilters treating Ohio River water which had undergone conventional treatment (coagulation, flocculation, sedimentation) or solutions of natural organic matter isolated from groundwater (both ozonated and nonozonated). With respect to filter depth, compared to filters treating no...
متن کاملEffects of vegetational type and soil depth on soil microbial communities on the Loess Plateau of China
Soil microbial communities are very sensitive to changes in land use and are often used as indicators of soil fertility. We evaluated the microbial communities in the soils of four types of vegetation (cropland (CP), natural grassland (NG), broadleaf forest (BF) and coniferous forest (CF)) at depths of 0–10 and 10–20 cm on the Loess Plateau in China using phospholipid fatty acid (PLFA) profilin...
متن کاملThe impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty...
متن کاملTracking down microbial communities via fatty acids analysis: analytical strategy for solid organic samples
Analysis of phospholipid fatty acid (PLFA) composition is one of the most commonly used culture-independent tools for investigating microbial populations in ecological studies. This methodology provides qualitative and quantitative insights into the structure of the microbial community and indicates the main groups of microorganisms present and their abundance. Perhaps the biggest strength of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2000